US009304919B2

a2z United States Patent (10) Patent No.: US 9,304,919 B2
Kalamatianos et al. 45) Date of Patent: Apr. 5, 2016

(54) DETECTING MULTIPLE STRIDE (52) US.CL
SEQUENCES FOR PREFETCHING CPC ... GOG6F 12/0811 (2013.01); GO6F 12/0862

(71) Applicant: Advanced Micro Devices, Inc.,
Sunnyvale, CA (US)

(72) Inventors: John Kalamatianos, Arlington, MA
(US); Paul E. Keltcher, Lexington, MA
(US)

(73) Assignee: Advanced Micro Devices, Inc.,
Sunnyvale, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 212 days.

(21) Appl. No.: 13/907,209
(22) Filed: May 31, 2013

(65) Prior Publication Data
US 2014/0359221 Al Dec. 4,2014

(51) Int.CL

GO6F 12/08 (2006.01)

PREFETCH TABLE 205

STRIDE | ADDRESS SO5 2 N

(2013.01); GOGF 2212/6026 (2013.01)
(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,831,800 B2 112010 Kocev

Primary Examiner — Daniel Tsui

(57) ABSTRACT

The present application describes some embodiments of a
prefetcher that tracks multiple stride sequences for prefetch-
ing. Some embodiments of the prefetcher implement a
method including generating a sum-of-strides for each of a
plurality of stride lengths that are larger than one by summing
a number of previous strides that is equal to the stride length.
Some embodiments of the method also include prefetching
data in response to repetition of one or more of the sum-of-
strides for one or more of the plurality of stride lengths.

20 Claims, 6 Drawing Sheets

200

By SOS LOGIC

¥26

-
s
S

228

230

T}

PREFETCH ADDRESS

US 9,304,919 B2

Sheet 1 of 6

Apr. 5, 2016

U.S. Patent

U 03 4D TIE 3400 nac
§IT SiT
AHIVIIT HHOVD 1T
[¥4l T T oy
AHIVO -1 AHOIVD (171 AHOVD (I-171 HHOVYS O-TT
[i 4} i) [0} [f14)
AHOYD 11 AHIVD 1T AHOVD 1T AHOVD 11
WAIHOL FAud FHOVD T
SOT ndD _m

(01

AYMOWHW NIV

US 9,304,919 B2

Sheet 2 of 6

Apr. 5, 2016

U.S. Patent

174
HOLVAINTD
S8HHAAY H03484d

SCC

JHDOT SO8

\\»omm \\Wﬁm

LX R

P

LX)

M TOSO8 sEFdaay

HOELS

SO0 319V LI HOLAIT4d

417

U.S. Patent Apr. 5, 2016 Sheet 3 of 6 US 9,304,919 B2

300
g

CYCLE | STRIDE | ADDRESS {8082 | 808-3 | §08-4 | SO8-5 | ACTION
0 0 A 0 0 0 0
1 +2 A+ 2 2 2 2
2 +2 A4 4 4 4 4
3 3 AT 5 ~ 5 ~
4 +3 AL 6 8 10 10
5 3 A+13 6 9 ooy | s
A+19
H +2 A+1S 5 2 11 13 185;’;
7 +2 A+17 4 - 10 3 5/35%5
8 +3 AT20 5 - 10 i1 10;5;'35
9 +3 A+22 6 8 03 352;
10 +3 AT26 6 9 i 13 Sﬁis
t +2 A+28 5 8 1 13 c’?i;

U.S. Patent Apr. 5, 2016 Sheet 4 of 6 US 9,304,919 B2

y/” 460

CYCLE | STRIDE | ADDRESS {S0S8-2HS08-5 | CF-2 H CF-5 | ACTION
0 0 A 0 0 0 0
1 +2 A2 2) 0 0
2 +2 Atd 4 4 0 0
3 3 A+7 5 7 o O
4 +3 A+10 6 10 0 0
5 +3 A+13 6 13 1 0
6) A+15 5 13 0 1
7 +2 A+L7 4 13 0 o) ii“f’%{f
B +3 A+20 5 13 0 2 gfq;f
9 +3 A+22 6 13 0 SOS-5
A+36
16 +3 A+26 6 13 1 2 SS;:
i +2 A28 5 13 0 2 ?zf

US 9,304,919 B2

Sheet 5 of 6

Apr. 5, 2016

U.S. Patent

Qmm./

FNAGGAS
AAMELS L8A0NOT
NO JASYY HOLAAH

Aﬁi!il

SEOTYA
SOS AAN AIVHAENTD
ATTINTHANONOD

ws
—
el

NOLLOTALSNI MEN
HOA HALS ALOdNGD

5J0TIdiTd GINI
SAIVA SOS 70 dviEd

I/I/J

SO5

U.S. Patent

Apr. 5,2016 Sheet 6 of 6
G0] Generate Functional
Specification

|

604 | Generate Hardware Description
Code
606 ™~ Generate Netlists é
¥
608

Gewperate Physical Layout Code é

¥

610

Fabricate IC Device §

US 9,304,919 B2

600

US 9,304,919 B2

1

DETECTING MULTIPLE STRIDE
SEQUENCES FOR PREFETCHING

FIELD OF THE DISCLOSURE

This application relates generally to processing systems,
and, more particularly, to detecting multiple stride sequences
for prefetching in processing systems.

BACKGROUND

Processing systems typically implement a hierarchical
cache complex, e.g., a cache complex that includes an [.2
cache and one or more L1 caches. For example, in a process-
ing system that implements multiple processor cores, each
processor core may have an associated L1 instruction (I.1-I)
cache and an L1 data (L1-D) cache. The L1-I and L1-D
caches may be associated with a higher level .2 cache. When
an instruction is scheduled for processing by the processor
core, the processor core first attempts to fetch the instruction
for execution from the L1-I cache, which returns the
requested instruction if the instruction is resident in a cache
line of the [.1-1 cache. However, if the request misses in the
L1-I cache (because the requested instruction is not stored
there), the request is forwarded to the .2 cache. If the request
hits in the 1.2 cache (because the requested instruction is
stored there), the 1.2 cache returns the requested line to the
L1-I cache. Otherwise, the L2 cache may request the line
from a higher-level cache or main memory. Similarly, the
processor core may attempt to fetch data used by the instruc-
tion from the L.1-D cache, which returns the requested data if
it is resident in a cache line of the L1-D cache. Otherwise, the
data may be requested from a higher-level cache or main
memory.

Many programs that are executed on a processing device
issue instructions that reference memory locations in a
repeating pattern. For example, a program may include a
sequence of load or store instructions that access memory
locations that are separated by the same number of bytes.
Performance of the processing device can be improved by
predicting one or more future accesses based on access pat-
terns in the address stream of previous accesses. Data from
the predicted memory locations can be pre-fetched from the
main memory (or a higher level cache) into one or more
caches such as the L.1-D cache so that the data is available in
the cache if subsequent instructions access the predicted
memory location.

An access pattern can be defined by a stride sequence that
indicates the number of bytes (typically referred to as the
stride) between addresses of successive memory accesses in
the access pattern. The stride sequence for the access pattern
may only include one value when each memory location is
separated from the previous memory location by a constant
number of bytes. For example, the address stream may access
the addresses A, A+16, A+32, A+48, A+64, etc. The stride
sequence for this address stream is therefore +16 and the
stride sequence has a length of 1. The stride sequence for a
sequence of instructions may also include more than one
stride. For example, the address stream may access the
addresses A, A+16, A+24, A+40, A+48, A+64, A+72, A+88,
A+96, etc. The stride sequence for this address stream is
therefore +16, +8 and the stride sequence has a length of 2
because it includes two different strides.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a processing device that may
be formed in or on a semiconductor wafer, according to some
embodiments;

10

15

20

25

35

40

45

50

55

60

65

2

FIG. 2 is a block diagram of a prefetcher that may be used
as one of the prefetchers shown in FIG. 1, according to some
embodiments;

FIG. 3 is a diagram of the prefetch table contents that may
be used as the prefetch table shown in FIG. 2, according to
some embodiments;

FIG. 4 is a diagram of the prefetch table contents that may
be used as the prefetch table shown in FIG. 2, according to
some embodiments;

FIG. 5 is a flow diagram of a method for detecting multiple
stride sequences and issuing prefetch requests based on the
detected multiple stride sequences, according to some
embodiments; and

FIG. 6 is a flow diagram illustrating an example method for
the design and fabrication of an IC device implementing one
or more aspects, according to some embodiments.

DETAILED DESCRIPTION

As discussed herein, a prefetcher can be used to identify
stride sequences and then prefetch data into a cache based on
the stride sequence. However, many programs generate com-
plicated stride sequences that would not be recognized by
conventional prefetchers. For example, benchmarking pro-
grams are known to generate address streams that include
stride sequences that have lengths that are greater than or
equal to 2. For another example, loads or stores found inside
of'nested loops frequently generate multiple stride sequences
in a sub pattern that includes strides of +x bytes that are
repeated S times followed by strides of +y bytes that are
repeated one time. The stride sequence generated by nested
loops of this form would therefore have a length of S+1.
Additional levels of nesting can create longer stride
sequences. Conventional prefetchers are not able to track
stride sequences that are equal to or longer than 2.

FIGS. 1-5 describe embodiments of prefetchers that can
detect and track a set of multiple stride sequences that have
lengths ranging from 2 up to N. As used herein, the term
“multiple stride sequence” refers to stride sequences that
include more than one stride. Some embodiments of the
prefetcher may detect and track a set of multiple stride
sequences by calculating a sum-of-strides for each multiple
stride sequence. For example, the sum-of-strides for the dif-
ferent multiple stride sequences can be calculated by sum-
ming the strides of a number of previous instructions that is
equal to the stride length of each of the multiple stride
sequences. As used herein, the term “stride length” refers to
the number of strides in a stride sequence. Some embodi-
ments may calculate the sum-of-strides for each stride length
(L) by adding the stride of the current instruction to the
sum-of-strides for the stride sequence that has the next shorter
stride length (L-1).

A prefetch request can be issued when the value of the
sum-of-strides for one or more of the stride sequences is
repeated for a predetermined number of cycles or instruc-
tions. The address of the prefetch request is set equal to the
address of the most recent instruction incremented by the
repeated value of the sum-of-strides. If more than one value of
the sum-of-strides for multiple stride sequences is repeated
for the same instruction, some embodiments may select the
repeated value of the sum-of-strides corresponding to the
longest stride sequence. Performance of the processing
device can be improved by tracking multiple sums-of-strides
of'varying lengths and then issuing prefetch requests that are
determined based on a repeating sum-of-strides, at least in
part because this allows the prefetcher to recognize more
complex access patterns.

US 9,304,919 B2

3

FIG. 1 is a block diagram of a processing device 100 that
may be formed in or on a semiconductor wafer, according to
some embodiments. The processing device 100 may be
formed in or on the semiconductor wafer using well known
processes such as deposition, growth, ion implantation, pho-
tolithography, etching, planarizing, polishing, annealing, and
the like. Some embodiments of the processing device 100
include a CPU 105 that is configured to access instructions or
data that are stored in the main memory 110. The CPU 105
shown in FIG. 1 includes four processor cores 112 that may be
used to execute the instructions or manipulate the data. The
processor cores 112 may include a bus unit (BU) 114 for
managing communication over bridges or buses in the pro-
cessing system 100. The CPU 105 shown in FIG. 1 also
implements a hierarchical (or multilevel) cache complex that
is used to speed access to the instructions or data by storing
selected instructions or data in the caches. However, persons
of ordinary skill in the art having benefit of the present dis-
closure should appreciate that some embodiments of the
device 100 may implement different configurations of the
CPU 105, such as configurations that use external caches,
different types of processors such as graphics processing
units (GPUs) or accelerated processing units (APUs), or dif-
ferent numbers of processor cores 112. Moreover, some
embodiments may associate different numbers or types of
caches 118, 120, 125 with the different processor cores 112.

The cache complex depicted in FIG. 1 includes a level 2
(L2) cache 115 for storing copies of instructions or data that
are stored in the main memory 110. Some embodiments of the
L2 cache 115 can be implemented using any associativity
including 2-way associativity, 8-way associativity, 16-way
associativity, direct mapping, fully associative caches, and
the like. Relative to the main memory 110, the [.2 cache 115
may be implemented using faster memory elements. The 1.2
cache 115 may also be deployed logically or physically closer
to the processor core 112 (relative to the main memory 110)
so that information may be exchanged between the CPU core
112 and the 1.2 cache 115 more rapidly or with less latency.

The illustrated cache complex also includes L1 caches 118
for storing copies of instructions or data that are stored in the
main memory 110 or the L2 cache 115. Each L1 cache 118 is
associated with a corresponding processor core 112. The [.1
cache 118 may be implemented in the corresponding proces-
sor core 112 or the L1 cache 118 may be implemented outside
the corresponding processor core 112 and may be physically,
electromagnetically, or communicatively coupled to the cor-
responding processor core 112. Relative to the [.2 cache 115,
the L1 cache 118 may be implemented using faster memory
elements so that information stored in the lines of the L1
cache 118 can be retrieved quickly by the corresponding
processor core 112. The [L1 cache 118 may also be deployed
logically or physically closer to the processor core 112 (rela-
tive to the main memory 110 or the L.2 cache 115) so that
information may be exchanged between the processor core
112 and the L1 cache 118 more rapidly or with less latency
(relative to communication with the main memory 110 or the
L2 cache 115).

Some embodiments of the L1 caches 118 are separated into
caches for storing instructions and data, which are referred to
as the [L1-I cache 120 and the [.1-D cache 125. Separating or
partitioning the [.1 cache 118 into an L1-I cache 120 for
storing instructions and an L1-D cache 125 for storing data
may allow these caches to be deployed closer to the entities
that are likely to request instructions or data, respectively.
Consequently, this arrangement may reduce contention, wire
delays, and generally decrease latency associated with
instructions and data. A replacement policy dictates that the

10

15

20

25

30

35

40

45

50

55

60

65

4

lines inthe [.1-1 cache 120 are replaced with instructions from
the L2 cache 115 and the lines in the L1-D cache 125 are
replaced with data from the 1.2 cache 115. However, persons
of ordinary skill in the art should appreciate that some
embodiments of the L1 caches 118 may be partitioned into
different numbers or types of caches that operate according to
different replacement policies. Furthermore, persons of ordi-
nary skill in the art should appreciate that some programming
or configuration techniques may allow the L.1-I cache 120 to
store data or the L1-D cache 125 to store instructions, at least
on a temporary basis.

The L2 cache 115 illustrated in FIG. 1 is inclusive so that
cache lines resident in the L1 caches 118, 120, 125 are also
resident in the L2 cache 115. Persons of ordinary skill in the
art having benefit of the present disclosure should appreciate
that the L1 caches 118 and the L2 cache 115 represent one
example embodiment of a multi-level hierarchical cache
memory system. However, some embodiments may use dif-
ferent multilevel caches including elements such as LO
caches, L1 caches, L2 caches, L3 caches, and the like, some
of which may or may not be inclusive of the others.

In operation, because of the low latency, a core 112 first
checks its corresponding [.1 caches 118, 120, 125 when it
needs to retrieve or access an instruction or data. Ifthe request
tothe L1 caches 118, 120, 125 misses, then the request may be
directed to the L2 cache 115, which can be formed of a
relatively slower memory element than the [L1 caches 118,
120, 125. The main memory 110 is formed of memory ele-
ments that are slower than the L2 cache 115. For example, the
main memory may be composed of denser (smaller) DRAM
memory elements that take longer to read and write than the
SRAM cells typically used to implement caches. The main
memory 110 may be the object of a request in response to
cache misses from both the L1 caches 118, 120, 125 and the
inclusive L2 cache 115. The L2 cache 115 may also receive
external probes, e.g. via a bridge or a bus, for lines that may be
resident in one or more of the corresponding [.1 caches 118,
120, 125.

Some embodiments of the CPU 105 include one or more
prefetchers 135 for prefetching instructions or data into one
or more of the caches 115, 118, 120 125 before the data has
been requested by one of the CPU cores 112. For example,
one of the prefetchers 135 can detect patterns in the addresses
associated with reads of main memory 110 and use the
detected patterns to predict the addresses associated with
future reads. The data at these addresses can then be
prefetched from the main memory 110 (or the .2 cache 115 or
other higher level cache) into the [.1-D cache 125 associated
with the requesting CPU core 112. Some embodiments of the
prefetchers 135 can track strides on subgroups of addresses.
For example, the data address stream generated by the CPU
cores 112 may be partitioned based on an instruction pointer
(RIP), a physical page that includes the address, or other
criteria. Each prefetcher 135 may then track addresses in the
data stream associated with one or more of the partitions.
Tracking strides on subgroups of addresses may improve the
accuracy of the tracking algorithm.

The prefetchers 135 shown in FIG. 1 can track a set of
multiple stride sequences that have lengths ranging from 2 up
to N by calculating a sum-of-strides for each multiple stride
sequence. For example, the sum-of-strides for multiple stride
sequences having stride lengths that range from 2 to 5 can be
calculated by summing the strides of a number of previous
instructions that is equal to the stride length of each of the
multiple stride sequences, e.g., the sum-of-strides for the
multiple stride sequence having a stride length of 2 sums the
most recent two strides, the sum-of-strides for the multiple

US 9,304,919 B2

5

stride sequence having a stride length of 3 sums the most
recent three strides, etc. The prefetchers 135 may then issue a
prefetch request when the value of the sum-of-strides for one
or more of the stride sequences is repeated for a predeter-
mined number of cycles or instructions.

FIG. 2 is a block diagram of a prefetcher 200 that may be
used as one of the prefetchers 135 shown in FIG. 1, according
to some embodiments. The prefetcher 200 includes a data
structure such as a prefetch table 205 that is used to store the
sum-of-strides and other information for a group of multiple
stride sequences. For example, the prefetch table 205 may
include a column 210 indicating the current stride that is
calculated with each instruction, a column 215 indicating the
addresses accessed by the instruction, and columns 220
including the sums-of-strides for the multiple stride
sequences of different stride lengths (SOS_2_N). The col-
umns 220 may also include other information such as infor-
mation indicating confidence levels for the sum-of-strides for
the multiple stride sequences. In some embodiments, the
strides or sum-of-strides may have positive values, negative
values, or amixture of positive and negative values depending
on the patterns in the data address stream.

Logic 225 in the prefetcher 200 can be used to read strides,
addresses, and sum-of-strides from past instructions. These
values come from the stride column 210, the address column
215, and the sum-of-strides column 220, respectively. The
logic 225 also implements a sum-of-strides algorithm that can
compute the sum-of-strides for each of the multiple stride
sequences using the information stored in the prefetch table
205. For example, if X is the new address and Y is the most
recent address previously seen in the data address stream of
interest, the sum-of-strides logic 225 can compute new values
(new SOS) for the sum-of-strides of each multiple stride
sequence of stride length (i) using:

new SOS,~(X-Y)+old SOS, |, 1

where old SOS, , is the old value of the sum-of-strides for the
multiple stride sequence having the next shorter stride length
(i-1). By definition, the value of SOS, is the value of the stride
from the previous instruction.

Some embodiments of the prefetcher 200 include flip-flops
230 to hold values of the sum-of-strides for each of the mul-
tiple stride sequences recorded in the prefetch table 205.
Values of the sum-of-strides for the multiple stride sequences
can therefore be read out into the flip-flops 230 before updat-
ing the values of the sum-of-strides for the current cycle. The
sum-of-strides algorithm 225 can then compute the new val-
ues of the sum-of-strides using information from the prefetch
table 205. Some embodiments may compute the new values
by reading the old values of the sum-of-strides out of the
prefetch table 205, storing them in flip-flops 230, and then
generating the new sum-of-strides in parallel because each
new sum-of-strides only depends on the newly generated
stride and one old sum-of-strides value. If needed, the indi-
vidual strides can be determined by subtracting the old sum-
of-strides from the new sum-of-strides.

The prefetcher 200 can also use the information in the
prefetch table 205 to detect repeated values of the sum-of-
strides for the multiple stride sequences. For example, a com-
parator 235 may read the previously stored values of the
sum-of-strides from the flip-flops 230 and compare them to
current values of the sum-of-strides stored in the column 220
of the prefetch table 205. A match between the previously
stored values and the current values indicates that the sum-
of-strides for the corresponding multiple stride sequence has
repeated. Repeating values of the sum-of-strides for a mul-

20

25

35

40

45

6

tiple stride sequence may indicate that the prefetcher 200 has
detected a pattern in the data address stream.

A prefetch address generator 240 may be used to generate
prefetch addresses associated with one or more multiple
stride sequences detected by the prefetcher 200. Some
embodiments of the comparator 235 can signal the prefetch
address generator 240 when repeating values of the sum-of-
strides for one or more multiple stride sequences have been
detected. The signal provided to the prefetch address genera-
tor 240 may include information identifying the addresses,
strides, or sum-of-strides for multiple stride sequences that
have repeating values of their corresponding sum-of-strides.
The prefetch address generator 240 may then generate a
request to prefetch data from an address that is determined
based upon address, stride, and sum-of-strides information.
For example, prefetch address generator 240 may generate an
address for a prefetch request at the current address incre-
mented by the repeating value of the sum-of-strides. The
prefetch address generator 240 may then issue a request to
prefetch data from the generated address. In cases where
more than one multiple stride sequence has a repeating sum-
of-strides in the same cycle, the prefetch address generator
240 may generate a prefetch address for the multiple stride
sequence that has the longest stride length. Issuing the
prefetch request for the multiple stride sequence with the
longest stride length may allow the prefetcher 200 to prefetch
the address that is furthest ahead in the stride sequence, which
may improve the timeliness of the prefetch requests.

FIG. 3 is a diagram of a prefetch table 300 showing the
contents of the prefetch table 205 shown in FIG. 2, according
to some embodiments. The prefetch table 300 includes a
CYCLE column that indicates the clock cycle during which a
new address is generated in the data address stream, a
STRIDE column that indicates the stride from the previous
access to the current access, an ADDRESS column that indi-
cates the address generated in the current cycle, and sum-of-
strides columns for multiple stride sequences that have stride
lengths 0of 2 t0 5 (SOS-2 SOS-5). Persons of ordinary skill
in the art having benefit of the present disclosure should
appreciate that some embodiments of the prefetch table 300
may include more or fewer sum-of-strides columns to moni-
tor multiple stride sequences that have more or fewer stride
lengths. The prefetch table 300 also includes an ACTION
column that indicates whether a prefetch request was issued
in the current cycle and, if so, the multiple stride sequence that
generated the prefetch request and the address of the prefetch
request. However, some embodiments of the prefetch table
300 may not include the ACTION column. Furthermore, in
the interest of clarity, entries in the prefetch table 300 are
listed for consecutive clock cycles. However, persons of ordi-
nary skill in the art having benefit of the present disclosure
should appreciate that entries are added to the prefetch table
300 in response to addresses being generated for instructions.
Thus, some embodiments of the prefetch table 300 may not
have entries for every clock cycle if no addresses were gen-
erated during some clock cycles.

Cycles 0-4 may be part of a warm-up period for the
prefetch table 300. For example, at cycle 0, only one instruc-
tion may have accessed data at address A. The sum-of-strides
for all of the multiple stride sequences may therefore be set to
0.Atcycle 1, the next instruction accesses data at address A+2
so that the current value of the stride is +2 and the sum-of-
strides for all of the multiple stride sequences is set to 2. The
sum-of-strides values for each successive cycle can be
updated, e.g., according to equation 1. For example, the sum-
of-strides values for the multiple stride sequence of length 5
(SOS-5) in the cycle 5 can be set equal to the sum-of-strides

US 9,304,919 B2

7

values of SOS-4 in cycle 4 incremented by the stride in cycle
5. The value of SOS-5 in cycle 5 is therefore 10+3=13. Since
there is no SOS-1 value, the value of SOS-2 may be calculated
by adding the current stride to the previous stride. In FIG. 3,
the previous stride is the stride value shown in the previous
cycle but in some embodiments the previous stride is the one
stored in the STRIDE column.

The value of SOS-2 repeats in cycle 5, e.g., the value of
SOS-2is 6incycle 4 and cycle 5. A prefetcher associated with
the prefetch table 300 (such as the prefetcher 200 shown in
FIG. 2) may therefore issue a prefetch request in response to
repetition of the value of SOS-2. Some embodiments may
issue the prefetch request to an address equal to the current
address plus the repeating value of the sum-of-strides for
SOS-2, e.g., A+13+6=A+19, as indicated in the ACTION
column for cycle 5.

The values of SOS-4 and SOS-5 both repeat in cycles 5 and
6. The prefetcher may therefore issue a prefetch request asso-
ciated with the multiple stride sequence having the longest
stride length. The prefetch request may be issued for an
address equal to the current address plus the repeating value
of'the sum-of-strides for the longest multiple stride sequence
with a repeating sum-of-strides (SOS-5 in this case), e.g.,
A+15413=A+28. Prefetch requests associated with the
shorter multiple stride sequences with a repeating sum-of-
strides (SOS-4) may therefore be gated so that they are not
issued. Bypassing the prefetch requests associated with the
shorter multiple stride sequences may allow the prefetcher to
issue prefetch requests for the addresses that will be refer-
enced furthest in the future because the length of the stride
sequence is proportional to the number of memory instruc-
tions that generate addresses. In this embodiment shown in
FIG. 3, the data for cycles 7-10 is not prefetched and demand
requests may be used to get the data at these addressees. If the
pattern of addresses in the stream holds true for many more
cycles, the prefetcher may eventually lock in to the exact
pattern and prefetch substantially all the subsequent
addresses in the stream.

FIG. 4 is a diagram of a prefetch table 400 shows the
contents of the prefetch table 205 shown in FIG. 2, according
to some embodiments. The prefetch table 400 includes a
CYCLE column, a STRIDE column, an ADDRESS column,
and sum-of-strides columns for multiple stride sequences that
have stride lengths of 2-5 (SOS-2 . . . SOS-5) such as the
corresponding columns in the prefetch table 300 shown in
FIG. 3. However, the prefetch table 400 also includes confi-
dence columns including information that indicates a confi-
dence level associated with each of the multiple stride
sequences (CF-2 . . . CF-5). For example, the confidence
columns may include counters that are incremented each time
the corresponding sum-of-strides repeats. The information in
the confidence columns may be used to filter out unnecessary
prefetch requests that can be generated during warm-up of the
prefetch table 400.

A prefetcher associated with the prefetch table 400 (such as
the prefetcher 200 shown in FIG. 2) may issue a prefetch
request in response to repetition of the value of SOS-2 when
the corresponding confidence value is above a predetermined
threshold. For example, prefetch requests may be issued
when the confidence level is 2 or higher, indicating that the
corresponding sum-of-strides has maintained the same value
for at least three consecutive addresses. In cycle 5, the sum-
of-strides for the multiple stride sequence having a stride
length of 5 (SOS-5) has a value of 13, which is not yet been
repeated. The confidence level for SOS-5 is therefore set to 0
in cycle 5. The value of SOS-5 repeats in cycle 6 and so the
confidence level for SOS-5 is set to 1, which is less than the

20

25

30

35

40

45

55

8

threshold of 2 and so no prefetch request is issued. In cycle 7,
SOS-5 repeats again and so the confidence level for SOS-5 is
set to 2, which is equal to the threshold of 2. The prefetcher
may therefore issue a prefetch request to an address equal to
the current address incremented by SOS-5, e.g., A+17+
13=A+30. The value of the confidence level may be decre-
mented when the sum-of-strides does not repeat in a cycle.
For example, in cycle 5, the confidence level for SOS-2 is 1
but SOS-2 does not repeat in cycle 6 and so the confidence
level for SOS-2 is decremented to 0.

FIG. 5 is a flow diagram of a method 500 for detecting
multiple stride sequences and issuing prefetch requests based
on the detected multiple stride sequences, according to some
embodiments. Some embodiments of the method 500 may be
implemented in prefetchers, such as the prefetcher 200 shown
in FIG. 2. At block 505, the sum-of-strides values from the
previous address are read out of a prefetch table in the
prefetcher and into flip-flops or other memory locations or
structures. At block 510, the prefetcher computes the stride
for a new instruction in the current cycle, e.g., by reading the
address of the previous instance from the prefetcher table
entry and subtracting it from the address of a memory location
accessed by the new instruction during the current cycle. At
block 515, the prefetcher concurrently generates new sum-
of-strides for a plurality of multiple stride sequences. For
example, the prefetcher may calculate the new sum-of-strides
for the plurality of multiple stride sequences in parallel using
the stride computed at block 510 and the old sum-of-strides
values stored in flip-flops at block 505.

The new sum-of-strides are compared with the old sum-
of-strides at block 520. If none of the sum-of-strides for the
multiple stride sequences repeats, then the method 500 may
be finished for the current cycle and may return to block 505
to read the old sum-of-strides values into flip-flops in
response to a new address to a memory location being gen-
erated. If one or more of the sum-of-strides for one or more of
the multiple stride sequences repeats, then at least one
prefetch request can be issued. Some embodiments of the
prefetcher use a confidence level to determine whether to
issue a prefetch request. This step is optional and so block 525
may be bypassed, as indicated by the dashed line to block 530.
Atblock 525, the prefetcher may therefore determine whether
aconfidence level associated with one or more of the multiple
stride sequences is greater than or equal to the confidence
level threshold for the multiple stride sequence. If not, then
the method 500 may be finished for the current cycle and may
return to block 505 to read the old sum-of-strides values into
flip-flops in response to a new address to a memory location
being generated. If so, then the prefetcher may issue a
prefetch atblock 530 based on the longest stride sequence that
had a repeating sum-of-strides in the current cycle, as dis-
cussed herein. The method 500 may then be finished for the
current cycle and may return to block 505 to read the old
sum-of-strides values into flip-flops in response to a new
address to a memory location being generated.

Embodiments of the techniques described herein provide
the ability to track and detect more than one multiple stride
sequence that may have different stride lengths. The hardware
cost of embodiments that implement embodiments of the
techniques described herein include maintaining sum-of-
strides values for each of the multiple stride sequences (e.g.,
in a prefetch table such as the prefetch table 200 shown in
FIG. 2). The number of bits used to track the sum-of-strides
values may depend on the minimum and maximum values of
the stride lengths that are being monitored by the prefetcher.
For example, if the total range (M) of stride lengths is M=abs
(maximum stride length)+abs (minimum stride length)+1,

US 9,304,919 B2

9

then the number of bits used to track each sum-of-strides is
log 2(M). Embodiments that use a confidence level to decide
when to prefetch data based on a multiple stride sequence
may include additional bits for a counter used to represent the
confidence level associated with each multiple stride
sequence. The hardware cost of embodiments described
herein is therefore significantly lower than the hardware cost
of'techniques that track multiple stride sequences by tracking
each individual stride. Embodiments of the techniques herein
are also able to detect and prefetch based on more compli-
cated patterns that would not be detected by conventional
prefetcher algorithms. These embodiments may therefore
provide more coverage because conventional prefetchers
would not issue prefetch requests because the confidence
level for the request may be degraded when the prefetcher
encounters multiple stride. Embodiments of the techniques
described herein may also prefetch with better accuracy
because the techniques described herein can track more com-
plex patterns and may not issue prefetch requests for single
stride sequences that are embedded in multiple stride
sequences. Embodiments of the techniques described herein
may also compute the prefetch address in a shorter period of
time because they only need one level of computation to find
the sum of strides for any multiple stride sequence tracked in
the prefetcher table, as opposed to computing the sum of
strides by adding together all the recorded strides in a
sequence if the prefetcher table was recording the actual
strides, instead of the sum of strides.

FIG. 6 is a flow diagram illustrating an example method
600 for the design and fabrication of an IC device implement-
ing one or more aspects, according to some embodiments. As
noted above, the code generated for each of the following
processes is stored or otherwise embodied in computer read-
able storage media for access and use by the corresponding
design tool or fabrication tool.

At block 602 a functional specification for the IC device is
generated. The functional specification (often referred to as a
micro architecture specification (MAS)) may be represented
by any of a variety of programming languages or modeling
languages, including C, C++, SystemC, Simulink, or MAT-
LAB.

At block 604, the functional specification is used to gener-
ate hardware description code representative of the hardware
of'the IC device. Some embodiments of the hardware descrip-
tion code are represented using at least one Hardware
Description Language (HDL), which comprises any of a vari-
ety of computer languages, specification languages, or mod-
eling languages for the formal description and design of the
circuits of the IC device. The generated HDL code typically
represents the operation of the circuits of the IC device, the
design and organization of the circuits, and tests to verify
correct operation of the IC device through simulation.
Examples of HDL include Analog HDL (AHDL), Verilog
HDL, SystemVerilog HDL, and VHDL. For IC devices
implementing synchronized digital circuits, the hardware
descriptor code may include register transfer level (RTL)
code to provide an abstract representation of the operations of
the synchronous digital circuits. For other types of circuitry,
the hardware descriptor code may include behavior-level
code to provide an abstract representation of the circuitry’s
operation. The HDL model represented by the hardware
description code typically is subjected to one or more rounds
of simulation and debugging to pass design verification.

After veritying the design represented by the hardware
description code, at block 606 a synthesis tool is used to
synthesize the hardware description code to generate code
representing or defining an initial physical implementation of

20

25

35

40

45

50

10

the circuitry of the IC device. In some embodiments, the
synthesis tool generates one or more netlists comprising cir-
cuit device instances (e.g., gates, transistors, resistors, capaci-
tors, inductors, diodes, etc.) and the nets, or connections,
between the circuit device instances. Alternatively, all or a
portion of a netlist can be generated manually without the use
of'a synthesis tool. As with the hardware description code, the
netlists may be subjected to one or more test and verification
processes before a final set of one or more netlists is gener-
ated.

Alternatively, a schematic editor tool can be used to draft a
schematic of circuitry of the IC device and a schematic cap-
ture tool then may be used to capture the resulting circuit
diagram and to generate one or more netlists (stored on a
computer readable medium) representing the components
and connectivity of the circuit diagram. The captured circuit
diagram may then be subjected to one or more rounds of
simulation for testing and verification.

At block 608, one or more EDA tools use the netlists
produced at block 606 to generate code representing the
physical layout of the circuitry of the IC device. This process
caninclude, for example, a placement tool using the netlists to
determine or fix the location of each element of the circuitry
of the IC device. Further, a routing tool builds on the place-
ment process to add and route the wires needed to connect the
circuit elements in accordance with the netlist(s). The result-
ing code represents a three-dimensional model of the IC
device. The code may be represented in a database file format,
such as, for example, the Graphic Database System II (GD-
SII) format. Data in this format typically represents geometric
shapes, text labels, and other information about the circuit
layout in hierarchical form.

At block 610, the physical layout code (e.g., GDSII code)
is provided to a manufacturing facility, which uses the physi-
cal layout code to configure or otherwise adapt fabrication
tools of the manufacturing facility (e.g., through mask works)
to fabricate the IC device. That is, the physical layout code
may be programmed into one or more computer systems,
which may then control, in whole or part, the operation of the
tools of the manufacturing facility or the manufacturing
operations performed therein.

Portions of the disclosed subject matter and corresponding
detailed description are presented in terms of software, or
algorithms and symbolic representations of operations on
data bits within a computer memory. These descriptions and
representations are the ones by which those of ordinary skill
in the art effectively convey the substance of their work to
others of ordinary skill in the art. An algorithm, as the term is
used here, and as it is used generally, is conceived to be a
self-consistent sequence of steps leading to a desired result.
The steps are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of optical, electrical, or magnetic
signals capable of being stored, transferred, combined, com-
pared, and otherwise manipulated. It has proven convenient at
times, principally for reasons of common usage, to refer to
these signals as bits, values, elements, symbols, characters,
terms, numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise, or as is
apparent from the discussion, terms such as “processing” or
“computing” or “calculating” or “determining” or “display-
ing” or the like, refer to the action and processes of a computer
system, or similar electronic computing device, that manipu-
lates and transforms data represented as physical, electronic

US 9,304,919 B2

11

quantities within the computer system’s registers and memo-
ries into other data similarly represented as physical quanti-
ties within the computer system memories or registers or
other such information storage, transmission or display
devices.

Note also that the software implemented aspects of the
disclosed subject matter are typically encoded on some form
of program storage medium or implemented over some type
of transmission medium. The program storage medium may
be magnetic (e.g., a floppy disk or a hard drive) or optical
(e.g., acompact disk read only memory, or “CD ROM”), and
may be read only or random access. Similarly, the transmis-
sion medium may be twisted wire pairs, coaxial cable, optical
fiber, or some other suitable transmission medium known to
the art. The disclosed subject matter is not limited by these
aspects of any given implementation.

Furthermore, the methods disclosed herein may be gov-
erned by instructions that are stored in a non-transitory com-
puter readable storage medium and that are executed by at
least one processor of a computer system. Each of the opera-
tions of the methods may correspond to instructions stored in
a non-transitory computer memory or computer readable
storage medium. In various embodiments, the non-transitory
computer readable storage medium includes a magnetic or
optical disk storage device, solid state storage devices such as
Flash memory, or other non-volatile memory device or
devices. The computer readable instructions stored on the
non-transitory computer readable storage medium may be in
source code, assembly language code, object code, or other
instruction format that is interpreted and/or executable by one
Of More Processors.

The particular embodiments disclosed above are illustra-
tive only, as the disclosed subject matter may be modified and
practiced in different but equivalent manners apparent to
those skilled in the art having the benefit of the teachings
herein. Furthermore, no limitations are intended to the details
of construction or design herein shown, other than as
described in the claims below. It is therefore evident that the
particular embodiments disclosed above may be altered or
modified and all such variations are considered within the
scope of the disclosed subject matter. Accordingly, the pro-
tection sought herein is as set forth in the claims below.

What is claimed is:
1. A method, comprising:
generating a sum-of-strides for each of a plurality of stride
lengths that are larger than one by summing a number of
previous strides that is equal to the stride length; and

prefetching data in response to repetition of at least one of
the sum-of-strides for at least one of the plurality of
stride lengths.

2. The method of claim 1, wherein generating the sum-of-
strides for each of the plurality of stride lengths comprises
adding a stride of a current address to the sum-of-strides for
the next shorter stride length.

3. The method of claim 1, comprising comparing the sum-
of-strides for each of the plurality of stride lengths to previ-
ously stored values of the sum-of-strides for each of the
plurality of stride lengths to determine whether said at least
one of the sum-of-strides has repeated.

4. The method of claim 1, wherein prefetching the data
comprises generating a prefetch address by adding said at
least one repeated sum-of-strides to a current address.

5. The method of claim 4, comprising selecting a sum-of-
strides for a longest stride length if the sum-of-strides for
more than one stride length was repeated.

10

15

20

25

30

35

40

45

50

55

60

65

12

6. The method of claim 5, wherein generating the prefetch
address comprises adding the sum-of-strides for the longest
stride length to the address generated by a current instruction.

7. The method of claim 1, comprising incrementing at least
one counter in response to said at least one of the sum-of-
strides for said at least one of the plurality of stride lengths
repeating.

8. The method of claim 7, wherein prefetching the data
comprises prefetching the data in response to said at least one
counter exceeding a threshold value.

9. The method of claim 7, comprising decrementing said at
least one counter in response to said at least one of the sum-
of-strides for said at least one of the plurality of stride lengths
not repeating.

10. A prefetcher, comprising:

a prefetch table for storing a sum-of-strides for each of a
plurality of stride lengths that are larger than one,
wherein each sum-of-strides is generated by summing a
number of previous strides that is equal to the stride
length, and wherein the prefetcher prefetches data in
response to repetition of at least one of the sum-of-
strides for at least one of the plurality of stride lengths.

11. The prefetcher of claim 10, wherein the prefetcher
generates the sum-of-strides for each of the plurality of stride
lengths by adding a stride for a currently generated address to
the sum-of-strides for the next shorter stride length.

12. The prefetcher of claim 10, comprising a plurality of
flip-flops to store sum-of-strides for each of the plurality of
stride lengths and a comparator to compare the sum-of-strides
for each of the plurality of stride lengths to previously stored
sum-of-strides for each of the plurality of stride lengths to
determine whether said at least one of the sum-of-strides has
repeated.

13. The prefetcher of claim 10, comprising an address
generator to generate a prefetch address by adding said at
least one repeated sum-of-strides to an address generated in
the current cycle.

14. The prefetcher of claim 13, wherein the address gen-
erator selects a sum-of-strides for a longest stride length in
response to repetition of the sum-of-strides for more than one
stride length.

15. The prefetcher of claim 14, wherein the addresses
generator adds the sum-of-strides for the longest stride length
to the address generated by an instruction in a current cycle.

16. The prefetcher of claim 10, comprising at least one
counter that is incremented in response to said at least one of
the sum-of-strides for said at least one of the plurality of stride
lengths repeating.

17. The prefetcher of claim 16, wherein the prefetcher
prefetches the data in response to said at least one counter
exceeding a threshold value.

18. The prefetcher of claim 16, wherein said at least one
counter is decremented in response to said at least one of the
sum-of-strides for said at least one of the plurality of stride
lengths not repeating.

19. A non-transitory computer readable medium storing
code to adapt at least one computer system to perform a
portion of a process to fabricate at least part of a processor
comprising:

a prefetch table for storing a sum-of-strides for each of a
plurality of stride lengths that are larger than one,
wherein each sum-of-strides is generated by summing a
number of previous strides that is equal to the stride
length, and wherein the prefetcher prefetches data in
response to repetition of at least one of the sum-of-
strides for at least one of the plurality of stride lengths.

US 9,304,919 B2
13

20. The non-transitory computer readable medium set forth
in claim 19, wherein the processor further comprises a plu-
rality of flip-flops to store sum-of-strides for each of the
plurality of stride lengths and a comparator to compare the
sum-of-strides for each of the plurality of stride lengths to 5
previously stored sum-of-strides for each of the plurality of
stride lengths to determine whether said at least one of the
sum-of-strides has repeated.

#* #* #* #* #*

14

